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ABSTRACT

This study is concerned with the analysis of the structural behavior

of composite materials. It is shown that composite materials can be de-

signed to produce a wide range of mechanical properties. Thus, a structural

designer now has at his disposal an added dimension in optimum design - the

materials optimization.

Two types of composite materials are investigated: the unidirectional

fiber-reinforced composite and the laminated anisotropic composite. Ana-

lytical relations are derived between the composite material coefficients and

the geometric and material parameters of the constituents.

Test specimens made of filament-wound materials are used. The ex-

perimental results show that the relations derived in this study are more

accurate than existing theories, which include the netting analysis. Reliable

data on filament-wound materials, which are now available for the first time,

can be used for future investigations of the behavior of filament-wound

structures.





CONTENTS

SECTION

1 INTRODUCTION ...............................

1. 1 Composite Materials ........................
1. Z Structural Behavior of Composite Materials .........
I, 3 Types of Structural Composites .................
1.4 Scope of Investigation ........................

UNIDIRECTIONAL COMPOSITES -- THEORY ...........

Z. 1 Introduction ...............................

Z. Z Prediction of E 1 1 ...........................

Z. 3 Prediction of EZZ ...........................
Z. 4 Prediction of vlZ ...........................
Z. fi Prediction of G ............................

Z. 6 Summary ................................

UNIDIRECTIONAL COMPOSITES -- EXPERIMENTAL
VE RIFICAT ION

3. 1 Introduction ..............................

3.2 Experimental Results ........................
3.3 Conclusions ...............................

THEORY OF LAMINATED COMPOSITES ...............

4. 1 Introduction ...............................

4. g Inversion of Composite Matrix ..................
4. B The Constitutive Equation .....................

CROSS-PLY COMPOSITES _ THEORY ................

5. 1 Lamination Parameters ......................
5. Z Derivation of A, B, and D Matrices ..............
5.3 Discussions of A, B, and D Matrices .............

CROSS-PLY COMPOSITES m EXPERIMENTAL
VERIFICATION ................................

6. 1 Experimental Procedure ......................
6. g Experimental Results ........................
6.3 Conclusions ..............................

PAGE

I-I

I-I
I-I

l-Z

I-3

Z-I

Z-I

Z-4

Z-4
Z-5

Z-6

Z-7

3-1
3-3

3-6

4-I

4-1
4-2

4-4

5-I

5-i

5-Z

5-4

6-I

6-I

6-3
6-3

iii



CONTE NTS (Continued)

_ECTION

7

8

10

ANGLE-PLY COMPOSITES -- THEORY ................

7. 1 Lamination Parameters ......................

7. Z Derivation of A, B, and D Matrices ...............

7.3 Discussions of A, B, and D Matrices .............

ANGLE-PLY COMPOSITES -- EXPERIMENTAL

VERIFICATION ................................

8. i Experimental Procedure ......................

8. Z Experimental Results ........................
8. 3 Conclusions ...............................

LAMINATED PRESSURE VESSELS ...................

9. 1 Theory of Laminated Pressure Vessels ............

9. Z Experimental Results ........................

9.3 Conclusions ...............................

CONCLUSIONS ................................

I0. i

10. Z

10.3

10.4

Statement of Work Accomplished .................

Limitations of the Theoretical Predictions ..........

Definition of Future Problem Areas ...............

Concluding Statement ........................

REFERENCES ................................

PAGE

7-i

7-i

7-I

7-3

8-I

8-I

8-1

8-3

9-1

9-I

9-Z

9-4

i0-I

i0-i

10-Z

10-3

10-3

R-I

iv



FIGURE

1

2

3

4

5

6

7

8

9

I0

Ii

12

13

14

15

16

17

ILLUSTRATIONS

PAGE

Photomicrograph of Unidirectional Composite ........ Z-Z

Contribution of Ef to EII, EZZ and G .............. Z-8

Contribution of Em to Ell, EZZ and G ............. Z-10

Contribution of Vm and vf to Ell, EZ2 and G ........ Z-If

Eli and EZZ Versus R ....................... 3-4

Steel-Epoxy Specimens ....................... 3-5

EZZ of Steel-Epoxy Composites with C = 0 and 1....... 3-7

and G Versus R ......................... 3-8
v12

Transverse Stiffness of a Fictitious Composite ....... 3-10

Dimensionless Stiffness Components All and AZZ ..... 5-5

Dimensionless Coupling Term BII and its Trans-
formation Property .......................... 5-7

Dimensionless Flexural Rigidities D II and DZZ ...... 5-8

Cross-Ply Composites ....................... 6-4

All and Dimensionless Aij for Representative Filament-
Wound Angle-Ply ........................... 7-4

Dimensionless BI6 and DI6 for Representative Filament-

Wound Angle-Ply ........................... 7-5

Angle-Ply Composites ....................... 8-Z

Cross-Ply Cylinder ......................... 9-3





NOME NCLATURE

A,,

1.1

1j

A'

1,1

B.*.
1j

BI.
1]

B 'v

la

C

C..
_J

la

D..

ij

D'.
ij

Ef

E
m

Ell

EZ__

F

Of

G
m

o

H.*.
11

Ill.
1,1

h

k

--'i

r..

i--.

[A] = A = in-plane stiffness matrix, in lb/in.

Intermediate in-plane matrix, in lb/in.

In-plane compliance matrix, in lb/in.

[B] = B = stiffness coupling matrix, in pounds

Intermediate coupling matrix, in inches

Compliance coupling matrix, in 1/lb

Transformed B..
1j

Filament contiguity, where 0 _< C < 1

Composite anisotropic stiffness matrix, in psi

Composite orthotropic stiffness matrix, in psi

[D] = D = flexural stiffness matrix, in lb-in.

Intermediate flexural matrix, in lb-in.

Flexural compliance matrix, in 1/lb-in.

Filament Young's modulus, in psi

Matrix Young's modulus, in psi

Axial stiffness of unidirectional composite, in psi

Transverse stiffness of unidirectional composite, in psi

Stiffness ratio = Ezz/E 11

Filament shear modulus = Ef/2(I + vf)

Matrix shear modulus = Era/Z(1 + Vm )

Shear modulus of unidirectional composite,

_H*J = H* = Intermediate coupling matrix,

--!

[H'_ = H' = Compliance coupling matrix, in 1/lb (= Bij

Plate thickness, in inches

Filament misalignment £actor. k _ I

in psi
$

in inch (# Bij)
!

 ran.posed Bt4] )

vii



NOME NCLATURE (Continued)

Kf

K
m

M,
1

m

N.
1

n

P

P

R

S..

U

Yf

Y
m

1

_0

i

0

K,
1.

vf

V

n'l

V
lZ

Vzl

a ,
1.

= Filament areal modulus = Ef/Z(l-vf)

= Matrix areal modulus = Em/Z(l- Vrn)

= Bending or twisting moment, in pounds

= Cross-ply ratio

= Stress resultant, in Ib/in.

= Total number of layers

= Internal pressure, in psi

= Two-dimensional hydrostatic pressure, in psi

= Percent resin content by weight or radius of pressure vessel

= Composite anisotropic compliance matrix, in psi

= Filament specific gravity

= Matrix specific gravity

= Strain component, in in. /in.

= In-plane strain component, in in. /in.

= Orientation of unidirectional filaments or lamination angle, in degrees

= Bending or twisting curvature, in (inch) -1

= Filament Poisson's ratio

= Matrix Poisson's ratio

= Major Poisson's ratio of unidirectional composite

= Minor Poisson's ratio of unidirectional composite

= VlzEzz/EI i

= Stress components, in psi

rf/)"m

= Resin content by volume = (100/R) + (Yf/Ym) - I

viii



SECTION I

INTRODUCTION

1, 1 COMPOSITE MATERIALS

Composite materials consist of two or more constituent materials

bonded together so that the gross properties of the composite are superior to

those of the constituents; e.g., the desirable properties (high strength, high

stiffness, and low weight) are maintained, while the undesirable properties

(low ductility) are suppressed. The present investigation is intended to es-

tablish some rational basis of compatibility between two constituent materials

of a composite from the mechanical standpoint. Process difficulties in com-

bining two vastly different materials, chemically and metallurgically in-

compatible, will not be considered here.

The mechanical compatibility is important if the composite material

is to be used for structural members. The desired gross properties of the

composite can be achieved by selecting the proper constituent materials and

putting them together in a proper geometrical arraugement. In short, the

present investigation of the structural behavior of cor_posite materials is

motivated from the standpoint of the design and optimization of composite

materials.

1. Z STRUCTURAL BEHAVIOR OF COMPOSITE MATERIALS

The composite material is treated as a heterogeneous anisotropi¢

continuum. Thus, the structural behavior of the composite material is

described by the mechanical constitutive equation of the composite. The

material coefficients of this equation describe the extent of mechanical

response of the composite under the influence of external loads. The present
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investigation is concerned with the relations between these coefficients and the

material and geometric parameters of the constituent materials. This will be

described further in the next section.

I.3 TYPES OF STRUCTURAL COMPOSITES

Structural composites can be classified basically into two classes:

multiphase and laminated. These are discussed in the following paragraphs.

a. Multiphase Composites

The multiphase composite consists of two or more constituent phases,

although most available composites contain only two phases. Examples of two-

phase composites include 1,2 cement aggregate, tungsten carbide in cobalt,

alumina whiskers in metal, silica fiber phenolics, teflon fiber in plastics, and

glass-reinforced plastics. As a mathematical approximation, two-phase

materials can be represented by a quasi-homogeneous continuum, i.e.,

locally heterogeneous but grossly homogeneous. Of the two phases, the

stronger, or reinforcing phase, can be approximated as sphericalor cylindri-

cal inclusions dispersed in the matrix phase. For example, the aggregates

can be regarded as spherical inclusions; the whiskers, fibers, and filaments

as cylindrical inclusions. Whenthe inclusions are randomly distributed, the

composite is grossly isotropic; when they are orderly distributed, the compos-

ite is grossly anisotropic. The type of symmetry of a grossly anisotropic

composite depends on the packing arrangement of the inclusions, e.g., tetragonal

or orthotropic symmetry for square packing and transversely isotropic for hexag-

onal packing.

b. Laminated Composites

The laminated composite consists of many layers of multiphase or homo-

geneous materials bonded together. Examples of laminated composites include

plywood, sandwich construction, and reinforced plastics. As a mathematical

approximation, laminated composites can be represented by an in-plane

homogeneous and transversely heterogeneous continuum. The transverse

heterogeneity has a step-wise variation in material properties between layers.

, I-Z



i.4 SCOPE OF INVESTIGATION

The present investigation is concerned with the structural behavior of

two types of composite materials: unidirectional fiber-reinforced composites

and laminated composites consisting of unidirectional composites. These are

discussed in the following paragraphs.

a. Unidirectional Fiber-Reinforced Composites

The unidirectional fiber-reinforced composite is treated as a two-phase

material, with the axis of the reinforcing fibers or filaments aligned parallel

and packed randomly in the plane transverse to the fiber axis.

The governing constitutive equation of this composite is the generalized

Hooke's law. The material coefficients of this equation are expressed as func-

tions of the material and geometric parameters of the constituent materials.

b. Laminated Composites Consistin_ of Unidirectional Composites

The laminated composite is assembled by bonding together unidirectional

layers of identical mechanical properties, with adjacent layers orthogonal to

each other (cross-ply) or oriented symmetrically with respect to an arbitrary

reference axis (angle-ply).

The governing constitutive equation is the relation between the in-plane

stress and moment and the in-plane strain and curvature. The material co-

efficients of this equation are expressed as functions of the properties of the

unidirectional composite and lamination parameters.

For the experimental verification of the theoretical predictions discussed

above, test specimens in the shapes of beams, plates, and cylindrical shells are

made from glass filament-epoxy resin composites.
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SECTION Z

UNIDIRECTIONAL COMPOSITES- THEORY

Z. 1 INTRODUCTION

The unidirectional filament-reinforced composite consists of a largd

number of parallel fibers or filaments embedded in a matrix. The governing

constitutive equation of this composite material is

a =c , (Z.l)
z ,j j

where Qi = the stress components; cj = engineering (not tensorial) strain

components; C.. = the composite stiffness matrix; i, j = 1, 2 ..., 6.
zj

The objective of this investigation is to derive the composite anisotropic

moduli as functions of the following material and geometric parameters:

Cij = Cij (El, vf, yf, Era, Vm, Ym' R, C, k, O) (Z.Z)

where E, v, y = the Young's modulus, Poisson's ratio, and specific gravity of

the filament and matrix, designated by subscripts f and m, respectively;

R = matrix (resin) content by weight; C = contiguity factor; k = filament mis-

alignment factor; and 0 = orientation of filament axis. The derivation of

Equation (Z. Z) can be simplified considerably by taking advantage of the trans-

formation property of the composite moduli, i.e., Equation (2.2) can be written

as

Cij = Cij (_ij' O) (z.3)

where _.. = the principal components of the stiffness matrix C...
1j ij
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Similar studies have been undertaken in recent years; in these studies,

the composite media were assumed to be locally heterogeneous and grossly

homogeneous with the following additional specializations:

3-6
(1) Local and gross isotropy

7
(2) Local anisotropy and gross isotropy

8-14
(3) Local isotropy and gross anisotropy

The present problem is concerned with (3). Most of the existing

works 8-12 may be considered modifications of Paul's 3 method, since they

considered the phases connected in series or in parallel. To apply Paul's

method, the actual filaments, shown in Figure 1, must be reshaped mathe-
13

matically into a square or rectangular cross section. Hashin and Rosen did

not reshape the filaments, but, instead, relocated mathematically the filaments

so that a hexagonal or nearly hexagonal array was attained. Herrmann and
14

Pister relocated the filaments into a square array.

Figure I. Photomicrograph of Unidirectional Composite
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The number of independent moduli increases from two, for the grossly

isotropic case, to four, five, or six for the unidirectional composite. The

exact number depends on the type of symmetry of the composite, as dictated

by the assumed packing arrangement of the fibers in the composite; this is

listed as follows:

Symmetry

Orthotropy
(Two- Dimensional)

Transverse Isotropy

T etragonal

Number of

Independent Moduli Refer enc e s

6-10

11

12

Fiber Packing

Random

Hexagonal or
Random

Square

For the present investigation, the fiber packing is treated as random,

and the symmetry is two-dimensional orthotropy. This viewpoint is realistic,

because the unidirectional composite is made in the form of thin plates or

layers. Instead of using the components of _ij' it is more convenient to use
15

the engineering constants Ell, E22,

11

ezz

v12, and G, where

= El l/(I- v12 v21)

= E22/(1 - v12 v21) (2.4)

C12 = v12 C22 = v21 _11

_66 = G

Once the expressions for the four engineering constants in terms of the

material and geometric parameters are known, _ij and Cij for any value of 0 can

be computed directly.
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Z. 2 PREDICTION OF E
ii

The prediction of EII, the composite stiffness parallel to the filaments,

is based on the well-known theory that 3' 5, 8, 9, ]0, l I, 13

Ell = Ef - (Ef - E m) k_ (2.5)

This theory says that the filaments and the matrix are connected in

parallel (Paul's upper bound3), and each carries a load proportional to its

stiffness. This relation must be corrected for filament misalignment factor,

such that

k,

(z.6)

where

)_ = matrix content by volume =
Yf/ Ym

(100/R)+(Yf/ Ym )- I
;k<l

This factor takes into account the fact that the filaments may not be exactly

parallel or not perfectly straight. This misalignment is the result of manu-

facturing processes of the composite material.

2.3 PREDICTION OF E22

The transverse stiffness, E22, of a unidirectional composite can be de-

rived by considering the filaments as parallel cylindrical inclusions. This

problem can be regarded as analogous to Hashin's problem on spherical 4 and

cylindrical 13 inclusions. But in the case of high filament content (say,

R = 20 percent), many filaments become contiguous, i. e., they are in contact

rather than isolated by the matrix, as shown in Figure I. Thus, the assump-

tions in Reference 13, that (I) each inclusion is completely enclosed by the

matrix and (2) the amount of resin enclosing each inclusion is the same as the

average matrix content of the entire composite, must be modified. Hence, fila-

ment contiguity must be incorporated in the theoretical prediction of E22
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The problem of filament contiguity can be resolved by taking two ex-

treme cases: (I) all filaments are isolated; (2) all filaments are contiguous.

The actual packing of the filaments is represented by a linear combination of

the two extreme cases. Numerical values of C (for contiguity) can be assigned

to the extreme cases, C = 0 for the isolated filaments and C = 1 for the con-

tiguous filaments. The resulting relation of E22 is 16' 17, 19

E22

[
_ 2

Kf (2K m + Gf) + Gf (K m - Kf))_ ]

]

Kf(2K m + G m) - Gm(K f - Ks) X

+ Gm) + 2 (Kf - Ks) M

(z.7)

where

Kf : Ef/Z(I - vf)

Ks: E /Z(lm " Pm )

Gf = Ef/Z(l + vf)

Gm= Em/Z(l + Vrn)

0_<c_<1

The actual value of C is expected to be closer to 0 than to 1 because the latter

case replaces the filament in contact by a continuous phase of the filament

material. As a comparison, the mathematical models used in References 12-14

correspond to the case of C -- 0 (filaments completely isolated).

2.4 PREDICTION OF v12

The major Poisson's ratio, v12, can be obtained by considering the iso-

tropic plane of the unidirectional composite to be in a state of plane stress,

i.e., cx : 0, where a x is the normal stress component along the axis of the
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filaments.

portional to

The amount of lateral contraction, as measured by
18

v12, so that

Ell _ E 1x 1 x
VlZ = _ = _

o + _ ZpY

_x' is pro-

(z.8)

where p = two-dimensional hydrostatic pressure.

The effect of filament packing must also be accounted for here as in the

prediction of E22. Following the same method as for E22, the resulting

relation is 19

vlZ = (i - c)
Kf vf (2Km + Gin) (I - X ) +Km Vm (2Kf + Gm) k'

Kf (ZK m + G m) - G m (Kf - K m) X

+C
K v (2Kf + X + Kf vf (2K + (I X)m m Gf) m Gf) -

Kf (2K m + Gf) + Gf (Km - Kf) X

(z.9)

Needless to say, the value of C for the major Poisson's ratio and the transverse

stiffness must be the same for a given unidirectional composite.

2.5 PREDICTION OF G

The shear modulus, G, of a unidirectional composite is derived by again

considering two extreme cases: C = 0, as shown in Reference 13, and C = 1. The

resulting relation is

2Gf - (Gf - G m) X
G=(I -C) G

+ - G m) )_m 2G m (Gf

+CGf

(Gf + G m) - (Of - G m)

(Gf + G m) + (Gf - G m))_

(z. lO)
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Again, the value of C for the gross shear modulus, G, for a given unidirectional

composite must be equal to that of the transverse stiffness and the major

Poisson's ratio.

2.6 SUMMARY

It is seen that analytical relations Have been derived between the inde-

pendent material coefficients of a unidirectional composite and the material

and geometric parameters of the constituent materials. The contribution of

each material or geometric parameter can now be ascertained with mathematical

precision. For a given structural application it can be easily determined what

combination of constituent materials is needed to produce the optimum composite

in terms of stress, stiffness or weight.

As a representative glass filament-epoxy resin composite, the following

material parameters of the constituents are used in the computation of the

composite material moduli:

Ef = I0.6 x 10 6 psi

vf = 0.2Z

yf = Z.60
(z.11)

E = 0.5 x l06 psi
m

Vm =0.35

Ym =1.15

The contribution of the filament stiffness Ef to the composite moduli

Ell' EZZ'. and G can now be illustrated. By increasing the value of Ef to

16.0 x l0 b psi, which corresponds to the high-modulus glass, or decreasing

Ef to 6.0 x 10 5 psi while keeping constant all the remaining values of

Equation (Z. II), the composite moduli are computed. The values used for

the filament misalignment factor k is I. 0, and the filament contiguity factor

C is 0. Z. These values were found to be reasonable for filament-wound

materials, as will be seen in the next section. The computed results of the

composite moduli are shown in Figure Z. It is clear from the results that the

filament stiffness makes the most significant contribution to the axial stiffness

Ell"
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Similarly, the contribution of the matrix stiffness E to the composite
rn

moduli EII, EZZ' and G can be illustrated by using different values of E (I.Z
rn

and 0. Z x 10 6 psi) while keeping all the remaining material parameters in

Equation (2. II) constant. The computed moduli are shown in Figure 3, with

k = I. 0 and C = 0. Z as before. It is clear from the Figure that the matrix

stiffness affects EZZ and G more than E l I"

The effects of Poisson's ratios of the constituent materials on the com-

posite moduli are illustrated in Figure 4 by substituting a number of combinations

of Poisson's ratios into the equations for the composite moduli. The axial

stiffness is not affected by the Poisson's ratios, because Equation (Z.6) does

not contain Poisson's ratios. The transverse stiffness and shear modulus do

not change significantly by the values of Poisson's ratio. Since most real

materials have values of Poisson's ratio between 0. Z and 0.4, the variation

of the major Poisson's ratio due to material parameters is not expected to be

significant and is, therefore, omitted from the present discussion.

With the composite moduli expressed as analytical functions of the

material and geometric parameters, optimization of unidirectional composites

can be achieved in a straightforward manner.
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SECTION 3

UNIDIRECTIONAL COMPOSITES-

EXPE RIMENTAL VERIFICATION

3. 1 INTRODUCTION

Among all the available investigations on the material coefficients of

unidirectional composites, experimental verification of the theoretical predic-

tions is either nonexistent 8' 9, 10, 12, 13, 14 or incomplete. 5' ll The lack of

fundamental data on filament-wound materials has often been cited. Z0'Z1 Thus,

the purpose of this section is twofold: (1) to design critical experiments for the

purpose of verifying the theoretical predictions of the preceding section and

(Z) to provide usable data on a typical unidirectional composite. Filament-

wound materials fulfill the requirements best for the following reasons:

(1) availability of materials, (Z) availability of advanced process technology,

and (3) the fact that these materials are in actual use.

Two systems of unidirectional specimens were made. In both cases,

unidirectional plies were laid by hand to provide the final thickness. Resin

content for each system represents the average of four samples taken from

widely spaced locations. The two systems are discussed in the following

paragraphs.

a. Scotch-ply

This system consisted of Minnesota Mining and Manufacturing Company

Scotch-ply No. I009-33 WZ 38. The curing cycle was: press preheated to

Z00°F, pressure 40 psi, temperature 300°F for Z hours, followed by slow

cooling. The cured thicknesses ranged between 0. l to 0. Z inch and the resin •

contents between Z0 to 35 percent.
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b. NUF

This system consisted of ii plies of U.S. Polymeric Company
E-787-NUF. The curing cycle was: no preheat, pressure 50 psi, tempera-
ture 300°F for 2 hours, followed by slow cooling. The cured thickness was
approximately 0.2 inch, and the resin content ranged from 13 to 20 percent.

The experimental determination of the composite anisotropic constants

was obtained as follows:

(i) E11 and E22 were obtained by simple flexural or uniaxial

tension tests on 0 ° and 90 ° beams (beams cut parallel or

transverse to the filaments). Strains were determined

from strain rosettes or cross-head motion. The E ll and

E22 obtained from the strain gage readings agreed well

with those obtained from simple bending. The implication

was that tensile, compressive, and flexural moduli, at

least for Ell and E22, were essentially the same.

(2) v 12 was measured by strain rosettes mounted on 0 ° beams.

The beams were subjected to uniaxial tension or simple

bending. Both loading schemes yielded identical data for _'12"

(3) G was measured by imposing a pure twisting moment on

a square plate (0 ° plate). This was accomplished by

placing four equal forces at the corners of the square plate.

The forces were perpendicular to the plate, with those at

the first and third quadrant corners being upward and the

second and fourth downward. G was computed from the

ratio of the imposed forces and the vertical deflection at the

center of the plate in accordance with the elementary theory

of plates.
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3.2 EXPERL_4ENTAL RESULTS

In this subsection, the theoretical predictions of the composite moduli

are compared with experimental measurements. Glass filament-epoxy resin

systems with the following properties were used (same as Equation {2. ll)):

Ef = i0.6 x 106 psi

uf = 0.Z2

yf = 2.60

E = 0.5 x 106 psi
in

P =0.35
rn

Ym = 1. 15

(3. 1)

Substituting these data into Equation (g. 6), E l1 for k = 1, and 0.9

were computed and are shown in Figure 5, together with experimental points.

Practically all points fall between k = 0.9 and I. 0. Since the specimens were

laid by hand, filament misalignment was expected to occur. This would re-

sult in a k value less than unity.

Using the same data of Equation (3. l), E22 was computed from

Equation (2.7) for C = 0, 0.2, 0.4, and I, as shown in Figure 5. It appeared

that experimental data agreed with the case of C = 0.2. The EZ2 predicted by

the series-connected phases is also shown. Hashin and Rosen's prediction 13"

corresponds to the C = 0 case. These predictions yield lower values than those

measured. Insofar as netting analysis is concerned, E22 is presumed to be

equal to zero or Era; this obviously disagrees with experimental data. The

prediction of Herrmann and Pister 14 is also shown; the difference between
i2

this prediction and measured data is self-evident. Jacobsen's prediction of

E22 yields a higher value than Ell; this is not reasonable.

The contiguity factor C, though convenient and sound in theory, still

needed a more critical verification. For this reason, steel rod-epoxy com-

posites were made with C = 0 (i.e., each rod was completely separated by

the resin) and C = 1 (i.e., a steel rod was drilled and subsequently packed

with resin). A total of 54 rods or drill holes, arrayed in three rows, made up

the composite bar. The rods or drill holes ran transversely to the axis of the

bar, as shown in Figure 6.
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Substituting the following data:

Ef = 30 x I06 psi

vf = 0.30

Yf = 7.87

E = as measured (i.e., 0.45, 0.60, 0.50 x 106 psi)
m

(3.z)

v =0.35
rn

)/m r. 1.15

into Equation (2.7) for C = 0 and 1, the computed results and the measured data

are shown in Figure 7. It is seen that the data agreed very well with the C = 0

and 1 cases. These results demonstrated the physical significance of the con-

tiguity factor.

Using the data of Equation (3. 1), VlZ was computed from Equation (Z. 9)

for C = 0, 0. Z, 0.4, and 1. This is shown in Figure 8, together with the meas-

ured points. Practically all points fell between C = 0 and 0.4. This is a further

verification of the contiguity factor.

Again using the data on Equation (3. 1), G was computed from Equa-

tion (Z. 10) for C = 0. 0.2, 0.4, and 1. This is also shown in Figure 8, together

with the measured points. Again, all points fell between C = 0 and 0.4. The

bounds based on Paul's theory were drawn in dotted lines to illustrate the in-

accuracy of this approximate theory when Ef is much greater than Ern. "['he

prediction of G by Herrmann and Pister 14 yielded higher values than those

measured, as shown in Figure 8. Hashin and Rosen 13 predicted a much lower

value (corresponded to C = 0). In fact, the measured points were higher than

the theoretical upper bounds of Reference 13.

3. 3 CONCLUSIONS

It is seen that the basic theoretical predictions of the composite

moduli of unidirectional filament-wound composites were in agreement with

3-6



q
lul

_ . _/

/ JI /
I _ o _./I

-J

J

| 1 I I

j j J/

. I j "

_j_ ell)/

i i l / ! _ i
in o i_. o in

lid 901 NI I'll'lQ(_l ]J, Ib_ll_lO_

O

I-

-- N

o_
lm

iz"

-2

O

O =-

s

II

o

8

N

K

3-7



ol

/
/

/ o

/
/

/

I_d 901 NI I"lnoolq EIV3H_; 3J.l_;OdlqO::)

lid

N

o_

,Z

3-8



experimental observations. The contribution of each material parameter to

the composite moduli as predicted in the preceding section must be reasonable;

thu s,

(1) Ef makes a significant contribution to Ell.

(2) E m makes a significant contribution to E22 and G.

(3) vf and Vrn do not make significant contributions to E l 1'

E22, and G. For this reason, VlZ as a function of the

material parameters has not been investigated.

Insofar as geometric parameters R, C, and k are concerned,

conclude:

one can

(1) Matrix content R makes a significant contribution to E 11'

EZZ, and G. R is directly related to the weight of the

composite.

(z) Contiguity C is probably not a controllable process

parameter for the system under investigation. Insofar

as stiffness is concerned, ahigher value of C increases

EZZ. It is of interest to note that when the Ef and E m

are of the same order of magnitude, the composite moduli

for C = 0 and I become very close. A fictitious matrix

(Em = 5.0 x 10 6) is combined with a high modulus glass

(Ef = 16.0 x 10 6) with a modulus ratio of 3.2. The

resultant composite transverse stiffness is shown in

Figure 9. The difference between C = 0 and 1 is very

small as compared with the same difference in Figure 7.

This may be considered as a justification for ignoring

contiguity in Hashin ws work on tung sten carbide- colbalt

composites, for which Ef/E m = 3.4.4 But for glass-epoxy

composites, for which Ef/E m = Z0, the effect of contiguity

has been shown to be significant.

(3) Filament misalignment k affects EII. This is detri-

mental in the sense that it decreases its value.
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It is seen that reliable properties of filament-wound materials are

now available. Needless to say, the theory developed in this study is appli-

cable to all fiber-reir_orced composites. In succeeding sections, laminated

composites consisting of orthotropic unit layers will be investigated.

The mechanical properties of a unidirectional composite can be varied

by a wide margin by changing one or several geometric and material param-

eters. A program of materials optimization in terms of stress, stiffness,

and weight can be readily obtained. This provides an added dimension to the

designer of structures.
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SECTION 4

THEORY OF LAMINATED COMPOSITES

4. 1 INTRODUCTION

The laminated composite under present investigation consists of n plies

of homogeneous anisotropic sheets. The stress-strain relation of the k th plyis

(k) = s(k) o(k) (4. 1)
i ij j

(k) = c!k) ¢ (k) (4. Z)
i U J

where 1 _< k S n; ¢. = strain components; a. = stress components; S.. =
* i ,j

compliance matrix; Cij = stiffness matrix; i, j = I, 2, 6; and repeated indices

represent summation.

In the classical plate theory, the variables used are

h/Z
/,

N i = stress resultant = J a i d z, in lb/in.

-h/Z

h/Z
?

M i = stress couple = J

-h/Z
¢i z d z, in lb

O

. = in-plane strain, in in. /in.
1

K i = bending curvature, in (in.) ml
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where the total strain _ . = ¢ o. + z K.. Thus the constitutive equation of a
I 1 I

laminated anisotropic plate, in matrix form, is

I

B I D
!

(4.3)

where the composite material matrix is partitioned into four submatrices, so

that

[A3 , [B3, [D3 =Aij, Bij, Dij

h/Z

/ (I, z, zZ) Cii d z, in ib/in., Ib, Ib-in.

-h/Z

Since each partitioned matrix is symmetric, the composite material matrix

is symmetric.

(4.4)

The purpose of the present investigation is to study the nature of A, B,

and D matrices as functions of material and lamination parameters. The

material parameters refer to the Cij matrix of the unit plies; the lamination

parameters refer to the thickness and orientation of each ply and the total num-

ber and stacking sequence of all the plies.

4.2 INVERSION OF COMPOSITE MATRIX

It is often more convenient to use the inverted constitutive equations of

Equation (4.3).

can be written as

N =

M =

From Equation (4.5), _o =

This can be easily accomplished as follows:

A ¢°+BK

B _°+DK

A -I N - A -I BK

Equation (4.3)

(4.5)

(4.6)

(4.7)
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Substituting Equation (4.7) into (4.6) and rearranging,

M : BA -I N+ (-BA -l B+ D)K (4.8)

Combining Equations (4.7) and (4.8), in matrix form, givem

[:o][A ][:]!

B A -I I -I, D -BA B

(4.9)

(4.10)

where the definitions of the star matrices are self-evident. Unlike the com-

posite material matrix of Equation (4.3), the composite star matrix is not

symmetric, i.e, B % H . This equation is a partial inversion of Equation

(4.3). The components of the star matrices are used as the coefficients of

the differential equation of equilibrium for laminated plates and shells. Re-

writing Equation (4. 10),

(o _lc ,Ic= A N+B K

M = H N+D K

(4.11)

(4.1z)

From Equation (4. 12),

D*-I $-1K = M -D H N (4.13)

Substituting Equation (4. 13) into (4. 12),

(o = B* D*" 1 M ÷ (A* - B* D $- 1 H*) N (4.14)
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Combining Equation (4. 13) and (4. 14), in matrix form, gives

E F
L _ I ':(- lK -D _'- H , D

IAB]E:]I

H' II D'

(4.15)

(4.16)

where the definitions of the prime matrices are self-evident. Since the com-

posite prime matrix is the inversion of the composite material matrix of

Equation (4. 3), it is also symmetric, i. e, B' = H'. This equation is the com-

plete inversion of Equation (4.3). Equation (4. 16) is more convenient to use

if the amount of stretching and bending is known for a given problem.

4. 3 THE CONSTITUTIVE EQUATION

Equation (4.3), or its alternate form as shown in Equation (4. 10) or

(4. 16), is the most general constitutive equation for laminated anisotropic

plates and shells. Since Cii is a fourth-rank symmetric tensor, Ai}, Bij, and

Dij must retain the same tensorial properties of Cij, i.e., they are also fourth-

rank symmetric tensors. As defined in Equation (4.4), Aij, Bij, and Dij are

obtained by integration along the z axis. This is a scalar operation, which, by

definition, does not alter the tensorial property of C... Thus, in general, there
1j

are 18 independent constants in the present constitutive equation.

If the plate is homogeneous, i.e., C.. is not a function of z,
D

12

Aij = 7 Dij' Bij = 0 (4. 17)

The only independent matrix is A; thus, the number of independent constants is

at most six.
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If the laminated plate consists of isotropic plies only (i. e., it is a

generalized sandwich plate),

CI1 = C22

C66 = (Cll CIZ )/2

C16 = C26 = 0

(4. 18)

There are only two independent constants for each unit ply, instead of generally

six constants. Thus, for a laminated isotropic plate, A..,x2Bij ' and D..Ijeach can

have at most two independent constants, making a total of six constants. These

six constants are, however, different from the six for homogeneous anisotropic

plates shown in Equation (4. 17).

If the plate is homogeneous and isotropic, the combined conditions of

Equation (4. 17) and (4. 18) reduce the number of independent constants to two.

If the components of Cij are even functions (i.e., Cij is symmetrical

with respect to the z = 0 plane), B.. is identically zero. The number of inde-
ij

pendent constants for this type of laminated anisotropic plate is reduced from

18 to iZ.

The number of independent constants for a laminated anisotropicocom=

posite is affected by the elastic symmetry of the C.. for each unit ply. A general

discussion of this subject is too lengthy for the present purpose. Only specific

types of laminated plates will be covered, viz., cross-ply and angle-ply com-

posites. It should now be pointed out that in the process of lamination, the

elastic symmetry of the original C.. (e.g., orthotropic, angular, cubic, iso-
ij

tropic symmetries), in general, is not carried directly into the laminated plate..

The level of symmetry may be increased or decreased, depending on the type

of lamination. For a given laminated plate, the elastic symmetries of Aij,

Bij, and Dij need not be the same.

4-5





SECTION S

CROSS-PLY COMI:K:)SITES- THEORY

5. I LAMINATION PARAMETERS

The cross-ply composite consists of n layers of an orthotropic material

stacked with alternating orientation of 90 ° between layers. The principal

direction of the odd layers coincide with the x axis, and the even layers with the

y axis. All the odd layers have the same thickness. The even layers also have

the same thickness, which may be different from that of the odd layers. The

lamination parameters of interest are n, the total number of layers, and m, the

cross-ply ratio which is defined as the ratio of the total thickness of the odd

layers to the total thickness of the even layers.

The purpose of this section is to determine the composite material

matrices A, B, and D as functions of the material parameter Cij and lamination

parameters m and n.

Assuming each unit layer is homogeneous, the integrations of Equa-

tion (4.4) can be replaced by summations, as follows:

n

k=l

(5. 1)

n

Bij 2 ¢_ij + I
k=l

(s.z)

Dij 3 ij + l
k=l

(5.3)
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For cross-ply composites,

the C.. for odd layers are
13

all layers are orthotropic, so that components of

CII' CZ2' CIZ' C66 with C16 = CZ6 = 0

The components of the C.. for even layers are the same as those for the odd
lj

layers, except that C 11 and CZZ are interchanged.

5. Z DERIVATION OF A, B, AND D MATRICES

The summations of Equations (5. 11), (5. Z), and (5.3), can be expressed

in closed form for the cross-ply composite. This is accomplished by taking

advantage of the properties of series. In a straightforward but laborious manner,

the following, where F = the ratio of principal stiffnesees of the unit ply

= Czz/CI1 = Ezz/Ell' can be derived:

a. For n Odd

1
AI 1 - (m + F) h C 1 1 (5.4)

l+m

1 l+mF
AZZ - (1 + m F) h Cll - All (5.5)

l+m m+F

AIZ = h C12 (5.6)

A66 = h C66 (5.7)

AI6 = AZ6 = 0 (5.8)

B.. = 0 (5.9)
Ij
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[ ]h3Dll = (F - 1) P + 1 -- C
12 11

(5.IO)

_F I) P + I] I +m h2- A 1
m+F 12 1

(5.ll)

[c h3D22 = I - F) P + _ C
12 II

(5. iz)

= l -F) P+ l+m
m + F 12 All

h 3
DI2 = 1-_ C12

{5.13)

(5.14)

h 3

D66 = I-Z C66 (5.15)

D16 = D26 = 0 (5.16)

where

P
1

(1 + m) 3

+ m (n - 3) [m (n - I) + 2 (n + l)]

(n 2 - 1) (1 + m) 3

b. For n Even

Same as the n-odd case, except for the following components:

_ m (F - I) h2 C - m (F - I)
BII = - B22 II n (I + m) (m + F) h All

n (1 + m) 2
(5. 17)
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[c ] h3Dll = F - 1) Q + 1 --12 CI1
(5.18)

] h z 1 + m (5. 19)= (F - 1) Q + I -- A 1 ]
lZ m+F

[( h3D2Z = I - F) Q + --lZ CII
(5. zo)

( F] h2 1 + m (5.21)= 1 - F) Q + -- A11
12 m+F

where

Q 1 8re(m- 1)
"l-m Z 3

n (l+m)

5.3 DISCUSSIONS OF A, B, AND D MATRICES

Using Equations (5.4) and (5.5), A 1 I and AZ2 are plotted, in dir_ension-

less form, in Figure 10. The remaining components of A are not plotted because

either they are identically zero or they remain constant, as shown in Equa-

tions (5.6), (5.7), and (5.8). One can conclude that for cross-ply construction:

(1) A.. remains orthotropic.
1j

(2) A. is independent of n, the total number of plies.
ij

(3) AII and AZZ are affected drastically by both the stiff-

ness ratio F and the cross-ply ratio m.
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(4) The average stiffness ratio for filament-wound

unidirectional ply is approximately 0.3 for resin

contents by weight between 15 and 30 percent. This

is also plotted in Figure 10. As a comparison, the

stiffness based on netting analysis, which assumes

C22 = 0 or F = 0, is also shown. The difference be-

tween the two cases, the former case being called the

continuum analysis for identification and the latter the

netting analysis, is quite substantial. The cross-ply

ratio, m, for "balanced design" based on netting analy-

sis is equal to 2.0.

The Bij is identically zero for cross-ply construction except for BI1,

which is equal to -B22, when n is even. Using Equation (5. 17), -Bll and B22

are plotted, in dimensionless form, in Figure 11. The physical significance

of Bll can be interpreted as a measure of the shifting of the neutral plane.

The numerical value in Figure 11 represents the amount of shifting as a frac-

tion of the total plate thickness. The maximum amount of shifting occurs when

n = 2. The shifting is inversely proportional to n. It becomes small for a

large number of plies. It is interesting to observe that this Bij has only one

independent component, i.e., Bll, with BZZ = -Bll and B12 = B66 = Bl_ = B26

= 0. This matrix is more than orthotropic, in the sense that its level of

elastic symmetry is higher than the orthotropic case. The transformation

" = " holds for all angles.
property of the Bij is also shown in Figure II. Bll -B22

BIZ" and B66" remain identically zero. B]' 6 = BZ6" also holds for all angles. At

45 °, B"ll = BZZ" = 0; i.e., the shifting of the neutral plane is zero. At this

orientation, the cross ply becomes the same as an angle ply, for which the

neutral plane does not shift.

The D matrix is much more complicated than the A and B matrices.

Since D ll and DZ2 depend on both the total number of plies n and stiffness

ratio F, only a few combinations of n and F are shown in Figure IZ. Again,

F = 0.3 represents the filament-wound material based on the continuum analy-

sis. First of all, for cross-ply composites Dij is orthotropic. Dll and D22

approach h 2 AII ]12 and h Z A22]12, respectively (i.e., the cross-ply composite

approaches a homogeneous plate), when: (1) m becomes large, (2) n becomes

large, or (3) F approaches 1. For a given cross-ply ratio (say, m = 2), the
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dimensionless flexural rigidities vary significantly, depending on the num-

ber of plies, with n = 3 and. Z as the extreme cases for m >_ I. It is seen that

an optimum set of material properties can be obtained by using a correct com-

bination of lamination parameters.

Insofar as netting analysis is concerned, the D matrix would be identi-

cally zero. This follows directly from the assumptions that the filaments are

perfectly flexible and the binding matrix perfectly compliant. Hence, for the

D matrix, F = 0 does not correspond to the predictions of the netting analysis.
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SECTION 6

CROSS- PLY COMPOSITE S -

EXPE RIMENTAL VERIFICATION

6. I EXPERIMENTAL PROCEDURE

The purpose of this section is twofold: (1) to establish the validity of

the classical theory of laminated plates and (Z) to provide usable data for the

design of cross-ply composites, which are often used in pressure vessels.

Experimental verification is accomplished by comparing the measured material

coefficients of laminated composites with the theoretical values derived from

the preceding section.

Since all tests were performed by observing the surface strains under

the influence of loads or bending moments, it was more direct to compare the

theoretical and measured values of the A', B', and D' matrices than the A, B

and D matrices. The primed matrices are the coefficients of the constitutive

equation in the inverted form, Equation (4. 16); the unprimed matrices are the

coefficients of the original constitutive Equation, (4.3). Since there is a one-

to-one correspondence between the two forms of the constitutive equation, an

experimental verification of one of the forms means an equal verification of

the other.

All laminated specimens were made of layers of the NUF unidirectional

composites. The resin content was approximately 17 percent by weight. The

elastic moduli of this unidirectional composite were determined experimentally

and found to be in excellent agreement with the theory of unidirectional compos-

ites given in Section Z of this report. The moduliwere as given in Equation

(6. 1) which follows.
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= 7.80 x 106 psiEli

E22 = Z.60 x 106 psi

v12 = 0.25

G = 1.25 x 106 psi

(6.l)

Using these data, the A, B, and D matrices were first computed for

various combinations of m (cross-ply ratio) and n (total number of layers).

Then the A*, B*, H*, D*, A', B', H', and D f matrices were computed,

according to Section 4.

As shown in Section 5, two- and three-layer laminated composites are

of special interest, since each represents an extreme case. When the number

of layers becomes large, the laminated composite approaches a homogeneous

plate very rapidly. Thus, n = 2 and 3 represent the range of variation of the

composite properties in a laminated composite. For this reason, all experi-

mental verifications were effectively achieved by testing n = Z and 3 for various

values of m between 1 and 10.

The components of the A', B ' and D' matrices were measured by testing

0 ° and 90 ° beams. The 0 ° beams were cut with the axis of the beams running

parallel to the axis of the filaments of the odd layers; the 90 ° beams parallel to

the filaments of the even layers. Strain rosettes were mounted on both sides

of the beam specimens. The in-plane strain and bending curvature were com-

puted by solving the following simultaneous equations:

o+ h_ i¢. = {+

z 2 1 z

¢O - --h K, = ¢ "
i x i

2

(6. Z)

where h = the thickness of the specimen; superscripts plus (+) and minus (-)

referred to the strain rosettes mounted on the sides of the specimen; i = 1, 2,

and 6.

By applying a uniaxial tension N 1 to a 0 ° beam, A_I , A_Z , B_I , and

B_2 were measured. By applying a bending moment M 1 to the same beam,

D_I, D_2, B_I, and Bi2 were measured. By repeating the same tests on a

90 ° beam, A_Z , A_I , B_2 , B_l , D_Z , and D_l were obtained. D66 was ob-

tained by imposing a pure twisting test on a 0° square plate. A66 was not

measured.
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6. Z EXPERIMENTAL RESULTS

The experimental results of cross-ply laminated composites of two- and

three-layer construction for various cross-ply ratios are shown in Figure 13.

The theoretical predictions based on the data given in Equation (6. ]) are shown

as solid lines. The data for the unidirectional composites, which correspond

to m = 00, are shown as m = 10. D66 remained constant for all values of m.

This was confirmed by tests. The results are not shown in Figure 13.

The level of strain was kept below 500 micro-inches per inch. In this

range, the load-strain curves were linear and elastic.

6.3 CONCLUSIONS

It is seen that the material coefficients of cross-ply composites can be

accurately predicted by using the classical theory of laminated plates. The

coupling between the in-plane strain and moment and between curvature and

stress resultant is very strong for n even, with n = 2 being the strongest. The

effect of coupling will give rise to internaUy induced stresses which are additive

to the externally imposed stresses.

Netting analysis, in a very approximate fashion, takes into account the

A.. but ignores B.. and D... In such an analysis, only the cross-ply ratio m is
,j Ij ij

significant, while the stacking sequence of the unidirectional layers or the total

number of layers n is ignored. It is believed that conclusive evidence has been

presented here to show that the continuum analysis is more realistic than the

netting analysis.
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SECTION 7

ANGLE-PLY COMPOSITES- THEORY

7. 1 LAMINATION PARAMETERS

The angle-ply composite consists of n unit plies of an orthotropic mate-

rial, with an alternating angle of orientation between layers. The odd plies are

orientated with an angle - 0 from the x axis and the even plies + 0 . All plies

have the same thickness. The lamination parameters for the angle-ply

composite are the total number of plies n and the lamination angle _ .

The purpose of this section is to determine the composite material

matrices A, B, and D as functions of the material parameter Cij of the unit ply

and the lamination parameters n and _ .

7. Z DERIVATION OF A, B, AND D MATRICES

As stated in Section 5.2, the A, B, and D matrices can be obtained by

summations shown in Equations (5. I), (5. Z) and (5.3). For angle-ply compos-

ites, these summations can be further simplified. In fact, A, B, and D can

be computed by very simple equations which can be easily derived by expanding

the summations and using the conditions of the angle-ply composite (symmetric

orientation of unit plies of equal thicknesses). The equations are shown in the
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following, where the C.. is the stiffness matrix with - 0 orientation:*
zj

a, For n Odd

All, A22, Alp ., A66 = h (CII, C22, C12, C66) (7. z)

h C26)(Al6, A26) = _ (C16,
n

(7. z)

zj

h3

(DII' D22' DI2' D66) - 12 (CII' C22' C12' C66)

(DI6' D26) - 12 n 3

(7.3)

(7.4)

(7.5)

b. For n Even

Same as the n odd case, except for the following components:

AI6 = A26 = 0

h2

(BI6, B26) =_ __
n

(C16, CZ6)

(7.6)

(7.7)

DI6 = D26 = 0 (7.8)

*The Cij for + 0 orientation is equal to that of the - 0 orientation, except that

the sign for C16 and C26 is changed.
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7.3 DISCUSSIONS OF A, B, AND D MATRICES

The absolute values of A I I for a representative filament-wound angle-

ply composite is plotted against the laminatlon angle 0 in Figure 14. The other

components of Aij are also shown in Figure 13 in dimensionless form. All, A22,

AI2, and A66 are independent of the number of plies, n. AI6 and A26, however,

are dependent on n; when n is even, they are zero; when n is odd, AI6 and A26

are inversely proportional to n. Thus, the maximum absolute values for AI6

and A26 occur when n = 3. It is interesting to note that, for n even, Aij is

orthotropic; for n odd, it is not orthotropic, because the plane of elastic sym-

metry is destroyed. For the latter case, the number of independent constants

is six This is a truly anisotropic system, corresponding to the triclinic case

for three-dimensional bodies. According to netting analysis, a lamination angle

of 53-3/4 ° is the optimum angle for internally pressurized vessels. According

to continuum analysis, there is no reason to restrict the use of the lamination

angle to one specific value.

The B matrix for angle-ply composites is identically zero for n odd, but

a function of n for n even. The dimensionless BI6 is plotted in Figure 15. The

effect of this ratio can be seen, as follows.

For uniaxial extension, the only non-zero component on the right-hand

side of Equation (4.3) is _ o Expanding Equation (4.3)
l"

O

N I = All c I

o

N2 = AI2 ¢1

N6 = A16 ¢ol = 0 (7.9)

MI= BI I _oi = 0

M2 = BI 2 _oi = 0

M6 = B16 _ Ol
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Thus

B16 M 6

h A 1 1 h N 1

(v. I0)

This ratio signifies the ratio of the internally induced twisting moment to the

in-plane stress resultant. From this ratio can be computed the ratio of the

shear stress over the normal stress for the case of uniaxial extension.

Similarly, it can be shown that

B26 M 6

h AzZ h N Z

(7.11)

This latter ratio has the same numerical value as Equation (7. I0), except that

the complement of the lamination angle is used for the abscissa.

The case of cross coupling caused by the nonvanishing Bl6 and B26 was

discussed by Reissner and Stavsky Z2 for a two-layer angle ply. From Figure 15

it is clear that this coupling for a representative filament-wound composite is

relatively weak. The coupling effect weakens very rapidly as n increases or 0

deviates from 45 °.

The D matrix for n even remains orthotropic. For n odd, D deviates

markedly from orthotropic symmetry; as can be seen from Figure 15 the

dimensionless D16 is 0.30 for n --3. This means that for simple bending, the

induced twisting moment is 30 percent of the imposed bending moment. This is a

very strong coupling and itdoes not decrease rapidly as n increases. The

perturbation technique of Dong and Dong 23 for solving problems of anisotropic

plates and shells will not be acceptable. The ratio of 12D26/h 2 A22 is the same

as the dimensionless Dl6 if the complement of the lamination angle is used.

7-6



5E CTION 8

ANGLE-PLY COMPOSITES-

EXPERIMENTAL VERIFICATION

8. l EXPERIMENTAL PROCEDURE

The experimental procedure used for the verification of the material

coefficients of angle-ply composites paralleled closely that used for the

cross-ply composites. Again, measurements of the A', B', and D' matrices

were made instead of the A, B, and D matrices, because stress resultants N i

and bending moments M i were the independent variables. Three-element

strain rosettes were bonded to both sides of 0 ° and 90 ° beams. Uniaxial ten-

sile loads and bending moments were applied to the beams sequentially. From

the recorded surface strains, the in-plane strains and curvatures were com-

puted in the same straightforward manner as before.

The total number of layers was limited to two and three. The n = 2

case was chosen because for this case the values of BI6 and B26 were maxi-

mum; i. e., the strongest coupling existed between the in-plane strain and

twisting moment or between the bending curvature and shear stress resultant.

The n = 3 case was chosen because the values of AI6, A26, DI6, and D26 were

maximum; i. e., maximum deviations from orthotropic symmetry of the A and-

D matrices existed. The figures in the preceding section showed the above

effects.

8.2 EXPER/MENTALRESULTS

Measurements were made on angle-ply composites with various Lami-

nation angles. The theoretical predictions of the material coefficients were

computed from the data in Equation (6. I). In Figure 16, good agreement
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between the theoretical and experimental results is shown. The unidirectional

composite corresponds to the 0° and 90 ° cases.

The theoretical curves for A22, A26, B26, D22, and D26 were not shown.

They were the mirror images (at 45 °) of All, AI6, BI6, Dll, and Dl6,

respectively. Also omitted from Figure 15 were A66 and D66.

8.3 CONCLUSIONS

For n = 2, a cross coupling caused by BI6 and B26 exists. This is a

source of internally induced shear stress in an angle-ply composite that is

additive to the externally imposed stresses. This is similar to the coupling

caused by Bll and B22 in the cross-ply composite, except that there the in-

duced stresses are normal stresses.

For n = 3, it is seen that the types of elastic symmetry for the A and D

matrices are changed from orthotropic symmetries at 0 ° and 90 ° to states of

general anisotropy (i.e., no symmetry at all).

Based on the experimental results obtained here, the following can be

concluded:

(I) The properties of unidirectlonal composites do transform

in accordance with the fourth-rank tensor; thus, the use

of the generalized Hooke's law is justified.

(2) The assumptions of the classical theory of anisotropic

plates are reasonable.

(3) The original data for the unidirectional composite, as

shown in Equation (6. 1), are accurate; otherwise the

variations of the A, B, and D matrices with the lami-

nation angle would not agree with the measured data.
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SECTION 9

LAMINATE D PRESSURE VESSE LS

9. 1 THEORY OF LAMINATED PRESSURE VESSELS

For cylindrical pressure vessels of thin-wall construction, the

membrane theory of shells is applicable. The stress resultants caused by

internal pressure are

N H = PR, N L = PR/Z (9. I)

where subscripts H and L denote hoop and longitudinal directions, respectively.

Using the inverted constitutive Equation (4. 10) for cross-ply cylinders,

[ I [1 (9.Z)

where direction 1 = hoop; direction Z = longitudinal. Combining Equations (9. 1)

and (9.z),

o = A_zlZ) PR_H (A_I +

G o = + A_*z/z)_PR(A_zL

(9.3)

9-1



It is more convenient to rearrange Equation (9.3) as follows:

Ell h

PR

E h
II

PR

'H°_-(A I+ A z/Z)Zilh

¢ o = A_2/2) EllL (AT2 + h

(9.4)

where E l I = axial stiffness of the unidirectional composite and h = total shell

thickness.

Netting analysis, on the other hand, predicts the following relations:

Ell h

PR

o _ l+m

H
m

Eli h ¢o
L

PR

l+m

Z

(9.5)

where m = cross-ply ratio = hH/h L.

The difference between the continuum analysis (9.4) and the netting

analysis (9.5) is quite substantial. According to the former, the resultant

strains are dependent on material coefficients A_I, ATZ, and AZZ.* These co-

efficients are, in general, functions of all the original anisotropic constants of

the unidirectional composite and the cross-ply ratio m. The netting analysis

predicts that the strains are only functions of m.

9.2 EXPERIMENTAL RESULTS

Cylindrical pressure veseels with various values of cross-ply ratios

were made and tested. The resultant surface strains are plotted in Figure 17,

together with the theoretical predictions of both netting and continuum analyses.

Unidirectional vessels (hoop winding only) correspond to m = m , but for these

particular vessels m = I0 is reasonably close to m = a0 so far as the strains

are concerned.
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From the experimental results, it is clear that the continuum analysis

is more exact than netting analysis, particularly in the prediction of the longi-

tudinal strain. The maximum level of strain was about 500 micro-inches per

inch. The pressure-strain relations were linear and elastic.

9.3 CONCLUSIONS

The experimental confirmation of cross-ply laminated pressure vessels

was adequate to establish the basis of continuum analysis. The significance of

the continuum analysis extends beyond the determination of strains. The stress

distribution, for example, can be computed from the constitutive equation of

Section 4 in a straightforward manner. In a cylindrical pressure vessel, geo-

metric constraint prohibits induced curvatures; i.e., cylindrical sections re-

main cylindrical.

From Equation (4. IZ),

M = H _' N (9.6)

where M = internally induced moments caused by zero curvature. The moments

would, in turn, affect the complete stress distribution in the pressure vessel.

In the prediction of strength, the induced stress and the initial stress must all

be added to the externally imposed stress. The exact level of total stress must

be known before one can assert what the "glass stress" or any other stress is.
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SECTION 10

CONCLUSIONS

10. 1 STATEMENT OF WORK ACCOMPLISHED

The work accomplished to date can be summarized as follows:

(i) Development of a theoretical basis for the prediction of

the gross behavior of fiber-reinforced composites from

the characteristics of the constituent materials. In-

cluded in the development are:

(a) An evaluation of the relationship and contribution of

the fiber and the matrix properties, matrix content,

composite density, and the geometric configuration,

as represented by Equation (2.2).

(b) The constitutive equations governing the unidirectional

composite, laminated composites (cross-ply and

angle-ply), and pressure vessels, as shown in

Equations (Z. 1), (4.3), and (9.2), respectively. The

effects of lamination parameters on the material

coefficients of the cross-ply and angle-ply composites

are shown in Sections 5 and 7, respectively.

(z) Use of suitable experimental technique to verify the theoretical

predictions of Item(1). Testing has been limited to include

a minimum of experiments for verification. Existing data

other than the axial stiffness of the unidirectional composite,

Ell' have not been found.
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10. Z LIMITATIONS OF THE THEORETICAL PREDICTIONS

The limitation of the theoretical predictions are summarized as

follow s:

a. Unidirectional Composites

(l) The unidirectional composite is quasi-homogeneous;

i. e., the diameters of the fiber or filament must be

small in comparison with the thickness of the uni-

directional composite, and the filament distribution

must be fairly uniform.

(z) The constituent materials, the filament and the

matrix, are homogeneous, isotropic, and linearly

elastic.

(3) A perfect mechanical bond exists between the filaments

and the matrix.

(4) All filaments are parallel and continuous.

(5) The unidirectional composite is in the form of a thin

plate or layer (i. e., a two-dimensional body).

(6) The unidirectional composite is a two-phase material;

i. e., it contains no air bubbles or other foreign matter.

b. Laminated Composites

(1) The laminated composite consists of perfectly bonded

layers of unidirectional composites of Item a.

(z) The total thickness of the laminated composite is small

in comparison with the length and width of the composite.

The displacement imposed on the composite is small,

assuring the validity of this assumption that normals to

the middle surface are nondeformable.
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10.3 DEFINITION OF FUTURE PROBLEM AREAS

Future problem areas shall include the following as natural extensions

of the present work:

(1) Elasticity analysis of stress concentrations caused by

openings, vibration, buckling, thermal-elasticity,

and so forth.

(z) Strength analysis, which will include the effects of

initial stress (arising from curing), internally in-

duced stress (arising from mechanical coupling, the

B matrix), and structural breakdown of perfect

bonding ( "c razing ").

(3) Recommendation of test methods for quality control

and design data generation.

(4) Materials optimization for various structural

configurations.

10.4 CONCLUDING STATEMENT

This study has shown the range of mechanical properties derivable

from composite materials. By using glass filaments and epoxy resin as the

basic constituents, unidirectional and laminated composites with vastly dif-

ferent properties can be made. Needless to say, other materials can be

used as the constituents in order to produce an even wider range of useful

mechanical properties. The material coefficients of the appropriate consti-

tutive equation are expressed as analytical functions (as opposed to empirical

functions) of various important geometric and material parameters of the

composite. With the analytical functions, materials optimization in terms of

stress, stiffness, or weight can be achieved in an exact fashion-by simple

differentiations with no necessity for additional assumptions.
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The present study has established a rational basis for the analysis of

composite structures. Other multiphase composites can be similarly analyzed.

Composites such as sandwich plates (Cij = isotropic, n : 3), plywood (Cij :

orthotropic, n = 3, 5,7) and others are special cases of the general laminated

anisotropic composite covered in this study. The general laminated composite

is inherently heterogeneous and anisotropic. This provides an enormous

flexibility in designing the composite material to meet a specific structural re-

quirement, e.g., the 2:i ratio of the principal stresses of cylindrical pressure

vessels. It is equally interesting that by selecting the proper lamination param-

eters a laminated anisotropic composite can be made to behave as a homo-

geneous and/or isotropic composite. 24 Thus, both the degrees of heterogeneity

and anisotropy are controllable.

Netting analysis is not a reasonable theory for filament-wound materi-

als. The continuum analysis outlined in this study is shown to be much more

realistic, and, more importantly, the analysis can be extended to describe

other types of structural behavior, e.g., the vibration and elastic stability of

the composite. It is believed that filament-wound materials have not been uti-

lized to their fullest potential. With added understanding of their behavior, it

is hoped that a reliable basis of optimum design can be established in the near

future.
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